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Abstract 

 

The global elastic parameters 32 ,kk  associated with the tide variations of the satellite motion 

are estimated from the Satellite Laser Ranging  (SLR) data. The study is  based on satellite 

observations taken by the global network of the ground stations during the period from 

January 1, 2005 until January 1, 2007  for monthly orbital arcs of satellites Lageos 1 and 

Lageos 2, separately. The  observation equation, contains unknowns which are related to 

orbital arcs only, some unknowns are common for all arcs and the Earth parameters, can 

also be estimated. The example is  elastic Earth parameters 32 ,kk  which describe tide 

variations of the satellite motion. The adjusted values 
2k  equal to  0.3016 0.0001 and  

0.3006 0.0001, 3k  equal to  0.0989  0.0051 and  0.0810 0.0051 for LAGEOS1 and 

LAGEOS2 tracking data are discussed and compared with geophysical estimations of Love 

numbers. All computations were performed employing the NASA software GEODYN II (Eddy 

et al. 1990). 

 

 

1. Introduction 

 

The attraction of the Earth is the most important force acting upon the artificial satellite. The 

perturbations produced by the Earth‘s gravity field evidently belong to the greatest 

disturbances. Usually, the gravity field and the tide potential (which describe the influence of 

the conservative forces) in the external point ),,( rP  of the Earth are given by following 

expression (1). 
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The gravity field is modeled by standard geopotential coefficients nmnm SC ,  and their tide 

variations nmC  and nmS  in time (Eanes et al., 1983) .The tide model (having frequency 

dependent Love numbers) is computed by a general procedure. 
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where: 

)(sinnmP - the associated Legendre‘a function of degree n and order m, 
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jGM         - gravitational parameter for the Moon and Sun, 

EGM        - gravitational parameter for Earth., 

jR             - vector from the geocenter to the Moon or Sun, 

,,r        - vector from geocenter to the station, geocentric latitude and longitude, 

2k       - nominal second degree Love number 
2k  equal to 0.3 

3k              - nominal third degree Love number 3k  equal to 0.093 by  Longman. 

 

For degree 2 the tide model is computed in two steps. The first step uses a frequency 

dependent Love number 
2k . The changes in normalized second degree geopotential 

coefficients for step 1 are: 
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The above equations are revised in such a way that three different Love numbers 

)2(),1(),0( 222 kkk  for long period, diurnal and semi-diurnal periods are introduced instead of 

one Love number 
2k . If  a common nominal number 

2k =0.3 is used in equations (2), then 

the differences between actual and nominal Love numbers must be corrected in step 2 which 

is described in (Eanes et al., 1983) 

 

The contributions of the degree 3 tides  mC3  and mS3  are computed by a general 

procedure (2) too. For n=3 m=0  is  described by following formula. 
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The partial derivative quantities 
2k


 and 

3k


  required in expression (5) to estimation of the 

Love numbers 2k  and  3k   (where   is a given SLR measurement) are computed   by 

differentiation of expressions  (3,4). 

The knowledge of the partial derivatives described above allows to calculate the Love  

numbers  2k  and 3k  ,using observation equations (5) an iterative process . Initial values used 

in solution were equal to 2k =0.3 described in IERS Technical Note 21 and  3k  =0.093 

(Longman) in (Melchior P, 1978) 
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where: 
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  - corrections regarded to the satellite arcs, 

2k  - correction to the Love number 
2k , 

      3k            - correction to  the Shida number  3k , 

      V              - correction to observation, 

)( CO           - observation to satellite minus computed distance between satellite and station. 

 

2. Method of analysis 
 

The study is based on the SLR data of LAGEOS-1 and LAGEOS-2 taken by the global 

network of SLR stations during the period from 3 January 2005 until 30 December 2006. The 

database of normal points was processed in  30-day batches. In total 48 orbital arcs were used 

in the analyses. A preliminary step not reported in this paper, the compression of 

observations into normal points, was performed for two-minute intervals of LAGEOS-1 and 

LAGEOS-2 by Crustal Dynamics Data Information System (CDDIS) and EUROLAS Data 

Center (EDC). Number of normal points used in solution for LAGEOS1 and LAGEOS2 is 

shown in Fig.1. 

 

The solution was produced employing the software GEODYN II (Eddy et al.,1990). The 

forces that perturb the satellite orbit needed to be modeled as accurately as possible.  The 

force models used and the reduction of measurements for LAGEOS-1 and LAGEOS-2 are 

shown in Table 1. The study is based on the station positions published by ITRF2005 referred 

to the epoch 2000.0. 

 

 

Table 1. Computation model used in the solution. 

DYNAMIC MODEL 

Gravity field TEG4 (20,20) 

Wahr solid Earth tides NASA/NIMA EGM96 ocean tides 

RC  direct solar radiation pressure estimated 

 Albedo and infrared Earh radiation 

 Relativistic effects 

Accelerations in along-track, cross-track and radial directions (for 5-day intervals) 

REFERENCE FRAME 

Station coordinates used –ITRF2005 referred to epoch 2000.0 

Nutation according to IAU 1980 (Wahr model) 

Pole tide 

Ocean loading deformation, atmospheric pressure loading deformation 

PROCESSING MODE 

Normal points provided by CDDIS and EDC 

Marini-Murray model for troposphere delay 

Center-of-mass correction used 

Station dependent data weighted 

OBSERVATIONS 

LAGEOS-1- 24 arcs normal points (2005.01.03- 2007.01.02) 

LAGEOS-2- 24 arcs normal points (2005.01.03- 2007.01.02) 

INTEGRATION 

Cowell 11-order predictor-corrector; step-size 2 min. 
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3. Results 

 

The paper presents  the global elastic Earth parameters  
2k and 3k  (Love numbers) associated 

with the tidal variations of satellite orbits estimated for 24 months time interval. The 

sequential method was adopted  for analysis. In the first step,  the elastic parameters were 

adjusted for two orbital arcs. In the next steps, arcs one after the other were included using 

sequential method. In the each step, the parameters were adjusted once again. The results of 

analysis are shown in Fig.2 and Fig.3. for  
2k   and 3k  separately.  The total adjusted value 

2k  is equal to 0.3016 0.0001  for LAGEOS1 tracking data and is equal to 0.3006 0.0001  

for LAGEOS2 tracking data. The total adjusted value 3k  is equal to  0.0989 0.0051 for 

LAGEOS1 and 0.0810 0.0051 for LAGEOS2. The discrepancy is at the  0.3% level  for 
2k  

and the 20% level for 3k . The differences from the LAGEOS1 and LAGEOS2  are not 

significant for 
2k  value. 

 

As an example, previous estimation of 
2k  by  Wahr (1981)   provide value  equal to 0.299 

which have to be corrected. 

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

0.00

1000.00

2000.00

3000.00

4000.00

5000.00

6000.00

7000.00

8000.00

9000.00

LAGEOS 1

LAGEOS 2

 
Figure 1. The number of normal points used in solution for LAGEOS1 and LAGEOS2. 
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Figure 2. The Love number 2k  estimated from Lageos1 data equal to 0.3016 0.0001 

and Lageos2 data equal to 0.3006 0.0001 
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Figure 3. The Love number 3k  estimated from Lageos1 data equal to  0.0989 0.0051 

and Lageos2 data equal to 0.0810 0.0051. 

 
 

4. Conclusions 

 

The SLR tracking data for satellite LAGEOS1 and LAGEOS2 were used to determine the  

elasticity Earth parameters 
2k  and 3k . On the basis of the computations performed it can be 

concluded that: 

 The estimated parameter, Love number 
2k  is equal to (0.3016 0.0001 and 

0.3006 0.0001) for  LAGEOS1 and LAGEOS2 tracking data separately. The 

good agreement of estimated parameters for both satellites can be seen. Difference 

is at the level 0.3%. 

 The estimated Love number 3k  is equal to ( 0.0989 0.0051 and 0.0810  0.0051). 

for LAGEOS1 and LAGEOS2 tracking data separately. Difference is equal to 

0.0179, it means at the level 20% value. The discrepancy with value estimated by 

Longman which is equal to 0.93 (P.Melchior,1978)  is agree at the level 5% . 

 Stability of  estimated elasticity Earth parameter 
2k   and their errors became 

visible for about 23-month time interval (Fig.2). But for 3k ,  24-month time 

interval  not allows to obtain stability of solution what is shown in (Fig.3). 

Probably for number of arc greater than 20 differences are at the level of noise. 
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